m CHAPTER 1 Introduction to MATLAB

>> mat(:,4) = [9 2]
mat =

2 11 4 9
5 6 7 2

Just as we saw with vectors, if there is a gap between the current matrix and the
row or column being added, MATLAB will fill in with zeros.

>> mat(4,:) = 2:2:8
mat =

N O o
S~ O o
oo~ B
o O N WO

1.5.4 Dimensions

The length and size functions in MATLAB are used to find array dimensions.
The length function returns the number of elements in a vector. The size func-
tion returns the number of rows and columns in a matrix. For a matrix, the
length function will return either the number of rows or the number of col-
umns, whichever is largest. For example, the following vector, vec, has four ele-
ments so its length is 4. It is a row vector, so the size is 1 x 4.

>> vec = -2:1
vec =

-2 -1 01
>> length(vec)

ans =
4

>> size(vec)
ans =
1 4

For the matrix mat shown next, it has three rows and two columns, so the size
is 3 x 2. The length is the larger dimension, 3.

>> mat = [1:3; 5:7]°

mat =
1 5
2 6
3 7
>> size(mat)
ans =

3 2

1.5 Vectors and Matrices a

>> length(mat)
ans =
3

>> [r c¢] = size(mat)

Note: The last example demonstrates a very important and unique concept in
MATLAB: the ability to have a vector of variables on the left-hand side of an
assignment.

The size function returns two values, so in order to capture these values in sep-
arate variables we put a vector of two variables on the left of the assignment.
The variable 1 stores the first value returned, which is the number of rows, and
¢ stores the number of columns.

QUICK QUESTION!

How could you create a matrix of zeros with the same size as zeros(size(mat))

another matrix? . . .) L
Answer: The size function returns the size of the matrix, which is then
For a matrix variable mat, the following expression would passed to the zeros function, which then returns a matrix of
accomplish this: zeros with the same size as mat. It is not necessary in this case

to store the values returned from the size function.

MATLAB also has a function, numel, which returns the total number of ele-
ments in any array (vector or matrix):

>> vec = 9:-2:1
vec =
9 7 5 3 1

>> numel (vec)

ans =
5
>> mat = randint(2,3,[1,10])
mat =
7 9 8
4 6 5
>> numel (mat)
ans =

6

m CHAPTER 1 Introduction to MATLAB

For vectors, this is equivalent to the length of the vector. For matrices, it is the
product of the number of rows and columns.

MATLAB also has a built-in expression end that can be used to refer to the
last element in a vector; for example, v(end) is equivalent to v(length(v)). For
matrices, it can refer to the last row or column. So, using end for the row index
would refer to the last row. In this case, the element referred to is in the first
column of the last row:

>> mat = [1:3; 4:6]°

mat =
1 4
2 5
3 6

>> mat(end, 1)
ans =
3

Using end for the column index would refer to the last column (e.g., the last
column of the second row):

>> mat(2,end)
ans =
5

This can be used only as an index.

1.5.4.1 Changing Dimensions

In addition to the transpose operator, MATLAB has several built-in functions
that change the dimensions or configuration of matrices, including reshape,
fliplr, flipud, and rot90.

The reshape function changes the dimensions of a matrix. The following matrix
variable mat is 3 x 4, or in other words it has 12 elements.

>> mat = randint(3,4,[1 100])

mat =
14 61 2 94
21 28 75 47
20 20 45 42

These 12 values instead could be arranged as a 2 X 6 matrix, 6 x 2, 4 X 3, 1 X
12, or 12 x 1. The reshape function iterates through the matrix columnwise.
For example, when reshaping mat into a 2 X 6 matrix, the values from the first
column in the original matrix (14, 21, and 20) are used first, then the values
from the second column (61, 28, 20), and so forth.

1.5 Vectors and Matrices

>> reshape(mat,Z2,6)
ans =

14 20 28 2 45 47
21 61 20 75 94 42

The fliplr function “flips” the matrix from left to right (in other words the
left-most column, the first column, becomes the last column and so forth),
and the flipud functions flips up to down. Note that in these examples mat
is unchanged; instead, the results are stored in the default variable ans each
time.

>> mat = randint(3,4,[1 100])

mat =
14 61 2 94
21 28 75 47
20 20 45 42
>> fliplr(mat)
ans =
94 2 61 14
47 75 28 21
42 45 20 20
>> mat
mat =
14 61 2 94
21 28 75 47
20 20 45 42
>> flipud(mat)
ans =
20 20 45 42
21 28 75 47
14 61 2 94

The rot90 function rotates the matrix counterclockwise 90 degrees, so for
example the value in the top-right corner becomes instead the top-left corner
and the last column becomes the first row:

>> mat

mat =
14 61 2 94
21 28 75 47
20 20 45 42

>> rot90(mat)

m CHAPTER 1 Introduction to MATLAB

ans =
94 47 42
2 75 45
61 28 20
14 21 20

QUICK QUESTION!

Is there a rot180 function? Is there a rot-90 function (to rotate

clockwise)? 42 45 20 20
Answer: 47 75 28 21
Not exactly, but a second argument can be passed to the rot90 94 2 61 14
function, which is an integer n; the function will rotate 80*n If a negative number is passed for n, the rotation would be in

degrees. The integer can be positive or negative. For example, the opposite direction, in other words, clockwise.
if 2 is passed, the function will rotate the matrix 180 degrees

(so, it would be the same as rotating the value of ans another

90 degrees).
>> mat
mat =

14 61

21 28

20 20

>> rot90(mat,?2)
ans =

>> mat
mat =
14 61 2 94
21 28 75 47
20 20 45 42
2 94 >> rot90(mat, -1)
75 47 ans -
45 42
20 21 14
20 28 61
45 75 2
42 47 94

The function repmat can also be used to create a matrix; repmat(mat, m,n)
creates a larger matrix, which consists of an m x n matrix of copies of mat. For
example, here is a 2 x 2 random matrix:

>> intmat = randint(2,2,[0 100])

intmat =
100 77
28 14

The function repmat can be used to replicate this matrix six times as a 3 x 2
matrix of the variable intmat.

>> repmat(intmat,3,2)
ans =

100 77 100 77

28 14 28 14
100 77 100 77

1.5 Vectors and Matrices a

28 14 28 14
100 77 100 77
28 14 28 14

1.5.5 Using Functions with Vectors and Matrices

Since MATLAB is written to work with vectors and matrices, an entire vector or
matrix can be passed as an argument to a function. MATLAB will evaluate the
function on every element, and return as a result a vector or matrix with the
same dimensions as the original. For example, we could pass the following vec-
tor, vec, to the abs function in order to get the absolute value of every element.

>> vec = -3:4

vec =
-3 -2 -1 0 1 2 3 4

>> abs(vec)

ans =
3 2 1 0 1 2 3 4

The original vector vec has eight elements, and since the abs function is evalu-
ated for every element, the resulting vector also has eight elements.

This also would be the case for matrices:

>> mat = randint(2,3,[-5,5])

mat =
-5 -1 0
3 5 -1
>> abs(mat)
ans =
5 1 0
3 5 1

We will see much more on operations and functions of arrays (vectors and
matrices) in Chapters 4 and 11.

1.5.6 Empty Vectors
An empty vector, or, in other words, a vector that stores no values, can be cre-
ated using empty square brackets:

>> evec = []
evec =

L]
>> length(evec)
ans =

0

m CHAPTER 1 Introduction to MATLAB

Then, values can be added to the vector by concatenating, or adding values
to the existing vector. The following statement takes what is currently in evec,
which is nothing, and adds a 4 to it.

>> evec = [evec 4]
evec =
4

The following statement takes what is currently in evec, which is 4, and adds
an 11 to it.

>> evec = [evec 11]
evec =
4 11

This can be continued as many times as desired, in order to build a vector up
from nothing.

Empty vectors can also be used to delete elements from arrays. For example, to
remove the third element from an array, the empty vector is assigned to it:

>> vec = 1:5
vec =
1 2 3 4 5
>> vec(3) =[]
vec =
1 2 4 5

The elements in this vector are now numbered 1 through 4.
Subsets of a vector could also be removed; for example:

>> vec = 1:8

vec =

1 2 3 4 5 6 7 8
>> vec(2:4) =[]
vec =

1 5 6 7 8

Individual elements cannot be removed from matrices, since matrices always
have to have the same number of elements in every row.

>> mat = [7 9 8; 4 6 5]
mat =

7 9 8
4 6 5

>> mat(1,2) = [];
7?7 Indexed empty matrix assignment is not allowed.

However, entire rows or columns could be removed
from a matrix. For example, to remove the second
column:

@ PRACTICE 1.7

Think about what would be produced by

>> mat(:.2) =[] the following sequence of statements and
mat = expressions, and then type them to verify
your answers.
p ; m=[1:4; 3 11 7 2]
m(2,3)
m(:,3)
SUMMARY m(4)
size(m)
Common Pitfalls numel (m)
It is common when learning to program to make sim- reshape(m,1,numel(m))
ple spelling mistakes and to confuse the necessary vec = m(1,:)
punctuation. Following are examples of very common vec(2) =5
errors: vec(3) = []
vec(5) = 8

Putting a space in a variable name

. . vec = [vec 11]
Confusing the format of an assignment statement as

expression = variablename

rather than

variablename = expression

The variable name must always be on the left.

Using a built-in function name as a variable name, and then trying to use the
function

Confusing the two division operators / and \

Forgetting the operator precedence rules

Confusing the order of arguments passed to functions, for example, to find the
remainder of dividing 3 into 10 using rem(3,10) instead of rem(10,3)

Not using different types of arguments when testing functions

Attempting to create a matrix that does not have the same number of values on
each row

Forgetting to use parentheses to pass an argument to a function; for example,
fix 2.3 instead of fix(2.3). MATLAB returns the ASCII equivalent for each character
when this mistake is made. (What happens is that is that it is interpreted as the
function of a string; for example, fix(‘2.3")).

Programming Style Guidelines
Following these guidelines will make your code much easier to read and under-
stand, and therefore easier to work with and modify.

Use mnemonic variable names (names that make sense; for example, radius instead
of xyz).

m CHAPTER 1 Introduction to MATLAB

Do not use names of built-in functions as variable names.

If different sets of random numbers are desired, set the seed for the rand function.
Do not use just a single index when referring to elements in a matrix; instead, use
both the row and column indices.

To be general, never assume that the dimensions of any array (vector or matrix) are
known. Instead, use the function length to determine the number of elements in a
vector, and the function size for a matrix, for example:

len = length(vec);
[r c] = size(mat);

MATLAB Functions and Commands

info floor double linspace
demo ceil int8 zeros
help round int16 length
lookfor rem int32 size
namelengthmax sign int64 numel
who pi intmin end
whos i intmax reshape
clear j char fliplr
format inf logical flipud
sin exp rand rot90
abs NaN clock repmat
fix single randint

MATLAB Operators

assignment = multiplication * divided into \ colon:
addition + exponentiation A parentheses () transpose *
subtraction — divided by / negation -

Create a variable, myage, and store your age in it. Subtract one from the value of
the variable. Add two to the value of the variable.

Use the built-in function namelengthmax to find out the maximum number of
characters that you can have in an identifier name under your version of MATLAB.
Explore the format command in more detail. Use help format to find options.
Experiment with format bank to display dollar values.

Find a format option that would result in the following output format:

>> 5/16 + 2/7
ans =
67/112

Think about what the results would be for the following expressions, and then

type them to verify your answers.
25 / 4 * 4

3+ 4 7~ 2
4\ 12 + 4

3~ 2

(5 -2) *3
Create a variable, pounds, to store a weight in pounds. Convert this to kilograms
and assign the result to a variable kilos. The conversion factor is 1 kilogram = 2.2
pounds.

The combined resistance RT of three resistors R;, Ry, and R; in parallel is given by

Create variables for the three resistors and store values in each, and then calculate
the combined resistance.

Create a variable ftemp to store a temperature in degrees Fahrenheit (F). Convert
this to degrees Celsius and store the result in a variable ctemp. The conversion
factoris C = (F — 32) * 5/9.

The function sin calculates and returns the sine of an angle in radians. Use
help elfun to find the name of the function that returns the sine of an angle
in degrees. Verify that calling this function and passing 90 degrees to it results
in1.

A vector can be represented by its rectangular coordinates x and y or by its
polar coordinates r and 0. The relationship between them is given by the
equations:

X =1r * cos(8)

y =r * sin(@)

Assign values for the polar coordinates to variables r and theta. Then, using
these values, assign the corresponding rectangular coordinates to variables x
and y.

Wind often makes the air feel even colder than it is. The Wind Chill Factor (WCF)
measures how cold it feels with a given air temperature T (in degrees Fahrenheit)
and wind speed (V, in miles per hour). One formula for the WCF is:

WCF=35.7+0.6T-35.7(V0.16)+0.43T(V0.16)

Create variables for the temperature T and wind speed V, and then using this
formula calculate the WCF.
Use help elfun or experiment to answer the following questions:

Is fix(3.5) the same as floor(3.5)?
Is fix(3.4) the same as fix(-3.4)?

Is fix(3.2) the same as floor(3.2)?
Is fix(-3.2) the same as floor(-3.2)?
Is fix(-3.2) the same as ceil(-3.2)?

Exercises

m CHAPTER 1 Introduction to MATLAB

Find MATLAB expressions for the following:

J19

3 1.2

tan(m)

Use intmin and intmax to determine the range of values that can be stored in
the types int32 and int64.

Are there equivalents to intmin and intmax for real number types? Use help to
find out.

Store a number with a decimal place in a double variable (the default). Convert
the value of that variable to the type int32 and store the result in a new variable.
Generate a random:

Real number in the range from 0 to 1
Real number in the range from 0 to 20
Real number in the range from 20 to 50
Integer in the range from 0 to 10
Integer in the range from 0 to 11
Integer in the range from 50 to 100

Get into a new Command Window, and type rand to get a random real number.
Make a note of the number. Then, exit MATLAB and repeat this, again making
note of the random number; it should be the same as before. Finally, exit MATLAB
and again get into a new Command Window. This time, change the seed before
generating a random number; it should be different.

In the ASCII character encoding, the letters of the alphabet are in order: ‘a’ comes
before ‘b’ and also ‘A’ comes before ‘B’, for example. However, which comes first:
lower- or uppercase letters?

Shift the string ‘xyz’ up in the character encoding by two characters.

Using the colon operator, create the following vectors

3 4 5 6
1.0000 1.5000 2.0000 2.5000 3.0000
5 4 3 2

Using the linspace function, create the following vectors:

4 6 8
-3 -6 -9 -12 -15
9 7 5
Create the following vectors twice, using linspace and using the colon operator:
1 2 3 4 5 6 7 8 9 10
2 7 12

Create a variable, myend, which stores a random integer in the range from 8 to
12. Using the colon operator, create a vector that iterates from 1 to myend in
steps of 3.

Using the colon operator and the transpose operator, create a column vector that
has the values -1 to 1 in steps of 0.2.

Write an expression that refers to only the odd numbered elements in a vector,
regardless of the length of the vector. Test your expression on vectors that have
both an odd and even number of elements.

Create a vector variable, vec; it can have any length. Then, write assignment
statements that would store the first half of the vector in one variable and the
second half in another. Make sure that your assignment statements are general,
and work whether vec has an even or odd number of elements (hint: use a
rounding function such as fix).

Using colon operators for the rows, create the matrix:

7 6 5
3 5 7

Generate a 2 x 3 matrix of random

Real numbers, each in the range from 0 to 1
Real numbers, each in the range from 0 to 10
Integers, each in the range from 5 to 20

Create a variable, rows, which is a random integer in the range from 1 to 5. Create
a variable, cols, which is a random integer in the range from 1 to 5. Create a matrix
of all zeros with the dimensions given by the values of rows and cols.

Find an efficient way to generate the following matrix:

mat =
7 8 9 10
12 10 8 6

Then, give expressions that will, for the matrix mat,
Refer to the element in the first row, third column
Refer to the entire second row
Refer to the first two columns

Create a matrix variable, mymat, which stores the following:

mymat =
2 5 8
7 5 3

Using this matrix, find a simple expression that will transform the matrix into each
of the following:

2 7
5 5
8 3

Exercises a

m CHAPTER 1 Introduction to MATLAB

2 5

7 8

5 3

8 5 2

3 5 7

8 3

5 5

2 7

2 5 8 2 5 8
7 5 3 7 5 3

Create a 4 x 2 matrix of all zeros and store it in a variable. Then, replace the second
row in the matrix with a 3 and a 6.

Create a vector, x, which consists of 20 equally spaced points in the range from —n
to +m. Create a y vector that is sin(x).

Create a 3 x b matrix of random integers, each in the range from -5 to 5. Get the
sign of every element.

Create a 4 x 6 matrix of random integers, each in the range from -5 to b; store it in
a variable. Create another matrix that stores for each element the absolute value of
the corresponding element in the original matrix.

Create a 3 x 5 matrix of random real numbers. Delete the third row.

The built-in function clock returns a vector that contains six elements: the first
three are the current date (year, month, day) and the last three represent the
current time in hours, minutes, and seconds. The seconds is a real number, but

all others are integers. Store the result from clock in a variable called myc. Then,
store the first three elements from this variable in a variable called today, and the
last three elements in a variable called now. Use the fix function on the vector
variable called now to get just the integer part of the current time.

